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The Aromatic Sextet

In the first paper in this series, hereafter
referred to as I, we presented a graph theoretical
description of condensed aromatic systems. The pre=-
sent work treats in some detail a special class of
these systems, namely those for which the a m-elec-
trons present (contributed to the bonding by the a
carbon atoms in the structure) may be grouped to-
gether into sextets in such a way that the sextets
can be consistantly associated with particular rings
in the structure. Such assignments of electrons will
lead to some rings having a full sextet of electrons
whereas the remaining rings will have no m-electrons.
Systems of this type have been designated by Polansky

and Derflinger1 all-benzenoid aromatic hydrocarbons,
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a term we shall employ in the present context. Symbols
and definitions given in I will be used here whenever

appropriate without further laboration.

The sextet of m-electrons assigned to a given
ring in an all-benzenoid hydrocarbon will be referred

to as an aromatic sextet. The assignment may be to

either an isolated ring, i.e. to a single benzene
ring, or to a ring forming an integral part of an
aromatic hydrocarbon. Although the notion of the
aromatic sextet was first adumbrated in the work of
Thomsonz, the expression itself is due to Robinson3'4.
This latter worker also introduced the symbols of a
circle in a hexagon to represent an aromatic sextet,
and used the sextet in an attempt to predict the
properties of little-known aromatic systems. Numerous
investigations expecially by Clar and his cc:-wo::]usn:s5-B
on aromatic hydrocarbons brought new insights into
the nature of these systems. In particular they
stressed the importance of a consistent usage of the
cycle symbol when drawing aromatic structures, and
Clar was even able to deduce certain criteria9 to

be observed in the construction of these systems.
Theoretical support for Clar's deductions was later

presented by Polansky and Derflinger1; the conclus-

ions reached in this work will serve as the basis of
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our present discussion.

Because the number of m-electrons in an aromatic
hydrocarbon always equals the number of carbon atoms
in the structure, a given structure can be all-benzen-
oid only if its number of carbon atoms is diversible
by 6. This condition is a necessary though insufficient

one, as reference to Figure 1 reveals. Therein are
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depicted three of the isomers of CagHqo namely tri-
phenylene, tetracene and tetraphene. However, only

the first of them is all-benzenoid, for three circles
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(representing nm-sextets) can be consistently assigned
to this, whereas for the other two no such consistent
assignment is possible. Whether a molecule is all-
benzenoid clearly depends upon the way in which its
component rings are fused together. In other words,
all-benzenoid molecules must be possessed of parti-

cular topological structures.

All-Benzenoid Aromatic Systems

It is convenient to designate rings in all-benzen-
oid systems having an assigned sextet of w-electrons
as full, and the others as empty. The simplest possible
all-benzenoid system, benzene, is easily characterized
as it possesses only one aromatic sextet. In more
complex systems having carbon atoms belonging to
more than one ring, care must be taken to ensure
that a given m-electron is associated with only one
ring. Morever, as all rings must be either full or
empty, a full ring will always have as immediate
neighbours empty rings. In fact, an empty ring must
always have three full rings as neighbours, for
only then can the m-electrons be properly assigned
to sextets in the three adjacent rings. As two full
rings may never be adjacent, the above reasoning
leads to the conclusion that at each empty ring

branching must be present.
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Rings in all-benzenoid systems which have one or
more attached hydrogen atoms will be designated peri-
pheral rings. This definition implies that every peri-
pheral ring will contain at least one carbon atom be-
longing solely to that ring. The m-electron from such
a carbon atom can be assigned only to the ring in
which the carbon atom is found; accordingly rings of
this type can never be empty. Circles may therefore
be drawn in all the peripheral rings of any all-
benzenoid hydrocarbon; this considerably simplifies

the assignment of aromatic sextets in general.

The above considerations lead to three basis
rules for deciding which rings are to be full and
which empty in all-benzenoid systems. These rules
are that
(i) only rings which are empty may be condensed on

to a full ring:

(ii) exactly three full rings must be condensed at
each empty ring, and the condensation must be in
the form of a branched annellation;

(iii) all the peripheral rings must be full.

Two rules, which follow automatically from these

three are that
(iv) condensation of rings in the form of a linear
annellation cannot give rise to an all-benzenoid

hydrocarbon, and
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(v) there is an upper limit of three on the number
of empty rings which may be condensed on to a

given empty ring.

The Nature of the Charateristic Graph

The rules given above for deciding which rings
are full and which empty in a given all-benzenoid
system rest on the fundamental assumption that every
ring in such a system may be assigned to only one of
two possible classes: the class of empty rings and
the class of full rings. A classification of this
type automatically implies that the characteristic
graph of any all-benzenoid hydrocarbon should be two-
colourable. The characteristic graph will be repre-
sented as in I by the symbol C, though a full ring
will now be represented by a full vertex (e) and an
empty ring by an open vertex (o). Our rule (i) stipu-
lates that C may contain no edges connecting two
full vertices, whereas rule (v) allows this for the

connection of open vertices in C.

Removal from C of all the edges connecting two
open vertices will result in the formation of an edge-
partial characteristic graph which we shall denote as
B. The graph B represents a system in which only empty
rings are joined to full rings and vice versa, and

as a result B itself must be bipartite. According to



Figure 2
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rule (ii) all open vertices in B must be of degree 3.
In Figure 2 the graphs B for all-benzenoid systems
containing up to three empty rings are illustrated.
This figure reveals that certain of the bipartite
graphs B contain cycles of length four. These cycles
arise from the removal of edges in C connecting two
open vertices. To explore in greater detail the re-
lationships existing between € and B, a more formal

description of each of these graphs is now presented.

The characteristic graph C defined in I as

c=[u, K, 81 (1)

is not bipartite. The edge-partial characteristic graph B,

which is bipartite, we shall define as the graph

B = [U; L; Qs (2)

where the sets L and @ are contained within the set

K and 8 respectively i.e.

L € &,

=
in

(3)

The difference in cardinality between sets K and L

is given as

|k} = |L] = s, (4)
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where s is the number of cycles of length four in C.
Whenever the right hand side of (4) is zero, the two
graphs C and B are identical apart from their colouring.
When s is greater than zero, C will contain exactly

2s cycles of length 3, since a cycle of length 4 appears
in B only when an edge common to two cycles of length 3
is removed from C. The number of edges of length 3 in

C will thus be given by the expression

o+
]

2s (5}

Clearly t can assume only even integral values in all-

benzenoid systems.

Some Set-Theoretical Relationships

The vertex set U may be regarded as the union of

two disjoint sets:

u=*Uo, (6)

where F represents the set of full vertices and ( the

set of open vertices.

The cardinality of the vertex set U is thus given

by the sum of the cardinalities of sets F and 0, i.e.
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by

[ul = [F| + |0]. (7

The number of carbon atoms is clearly equal to

a =6|F|. (8)

As all open vertices B are of degree 3 and as

no edge can exist which connects two open vertices,

we may write for the cardinality of L

IL] = 3]0]. (9)

From (4) it now follows that the cardinality of K is

given by

K| = 3]0] + s. (10)

From Table 1 of I and making use of (7) its follows

that t may be expressed as

t = |K|l = |[F| = ]0] +1 =X, (1)

We now write (5) in the form s = t - s, and substitute

into the right hand side expression (11) for t and ex-
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pression (10) for s. The result may be re-written as

[Fl = 2]0] +1 -Xx - s (12)

this relationship may be seen to hold from the fact
that one needs an extra full vertex to satisfy rule

(ii) if a cycle of length 4 were to be opened.

The upper bound of s must depend on |0|, since
in each cycle of length 4 two open vertices will be
required. When B contains as many such cycles as
possible we have in the peripheral edge sequence open
vertices all of which belong to two cycles (see Fi-

gure 3); but the open vertices in the inner region be-

Figure 3
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long to three. As each cycle of length 4 requires two

open vertices, the range of s may be given as
0<s <30 (13)

where it is understood that the upper limit may be
attained only when |0| + =. In the case where |[0| < 6

we have the sharper relationship
0<s < (|0 -1. (14)

From (7} and (11) we may now derive the following

expression for the cardinality of U:
|uf = 3/0] +1-%x -5 (15)

This equation enables a further characterization of C.

The number of carbon atoms is given in (8), when
there are no cycles in B, b will be given by the differ-
ence between a and the number of carbon atoms common

to both a full and an empty ring. This latter member

is known to be 6|0|. The number of hydrogens is further
reduced by 2 for each corona and by 4 for each cycle
of length 4 in B. Hence using (12) we may write the

general equation

b=3¢+ |F| +3 -5+ X. (16)



- 103 -

A Simplified Construction of All-Benzenoid Aromatic

Hydrocarbons

A consequence of rule (ii) is that any all-benzen-
oid aromatics hydrocarbon may be constructed from tri-
phenylene units. Such a unit is conveniently depicted
by a triangle, the vertices of which represent the

full rings of the triphenylene unit. Figure 4 shows

Figure 4

the relationship between the characteristic graphs
and these simplified graphs. In Figure 5 we illustrate
the graphs of all benzenocid systems containing up to

3 triphenylen units.
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We denote these simplified graphs by P and define

them as follows
P=[F, 21. (17)

where F has the same significance as in (16) and Q

is the edge set.

In order to derive the bipartite graph B from a
given P one must place an open vertex at the centre
of each triangle and connect this vertex to the three
full vertices of the triangle and supress the original
edges of P. The number of triangles in P can accordingly
not exceed 3 - |0|; but it will be diminished by the
number of cycles present in B because each cycle of B
is represented in P by an edge common to two triangles.

Thus we may write
m{=3\01—s—2=%[3|FI-3+3+E]. (18)

Isomerism in All-Benzenoid Aromatics

As inspection of Table 1 shows, the two species
designated therein as III and IV are isomeric, as are
the triplet VI, VII and VIII, and the sextet IX, X,
XI, XII, XIITI and XIV. Moreover Figures 2 and 5 bring

out the fact that the isomerism arises from differing
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types of annellation at certain full vertices which
serve as articulation points. The isomers are thus

to be regarded as a particular sort of geometrical
isomer. For the discussion of these isomers we may
utilize the graph P, bipartite graph B, or the charac-
teristic graph C. All are equally appropriate for this
purpose as P corresponds bi-uniquely with B, and B
bi-uniquely with C. Since P has the smallest vertex

set, we choose the graph P.

It must be pointed out that P is not uniquely
determined by the cardinalities |F| and |Q2|, neither
as regards its type (compare for instance the species
XIV with IX up to XIII) nor its topology. We know,
however, that these cardinalities do uniquely determine
the pair (a, b). In fact, given any one of these two
pairs, the magnitudes of the remaining one may be uni-
quely evaluated. Accordingly, a given pair (|F|, |2])
can correspond to only one empirical formula CaHb,
and all species corresponding to these pairs will be
isomeric., The actual number of isomers which can
exist for an all-benzenocid system characterized by a
pair such as (|F|, |2]) will be determined by two

factors. The first is the type of graph involved;
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Table 2: The Types of Isamerism Arising in the All-

Benzenoid Species Depicted in Figures 2

and 5

Topological
Type Variations
[FI| [0]] s [2]] a b Py | P3| Py| Pg | Pg Number Species
3 1 o] 3 118117213 0 0 (] 0O 1 1
4 2 1 5 24 | 14 | 2 2 0 o] 0 1 I
5 2 o] 6 30 18 4 o] 1 o] 0] 2 111, IV
5 3 2 7 30|16 | 2 2 1 [¢] 0 1 \'
3 2 1 o] o] 2 VI, VII
6 3 1 8 36 | 20
4 1 o 1 0] 1 VIII
5 ¢] 2 0 o} 5 X, X, X1,
7 3 0 9 42 | 24 XII, XIII
6 0 0 0 1 1 X

this may be characterized in terms of the pj where

B denotes the number of vertices in P of degree j.

The second is the topolegical variations associated

with each type; these are illustrated in Table 2 in

the case of species I to XIV.

This paper may be cited without permission.
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