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Abstract

A detailed graph-theoretical description of both cata-
and peri-condensed aromatic hydrocarbons constructed
from benzene rings is presented. A discussion of

the non-topological features of the characteristic
graph is included. Ten parameters have been derived
from the constitutional graph, the characteristic
graph and the empirical formula; they are all inter-
related, but certain triples of them are shown to

be mutually independent.

Introduction

In this series of paper we propose to investigate
from a mainly topological standpoint the structure and

properties of aromatic hydrocarbons. By the term aromatic
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hydrocarbon we shall always mean a molecular species
consisting only of carbon and hydrogen atoms, constructed
in such a way that every carbon atom be incorporated with-
in at least one hexagonal carbocycle and every hydrogen
atom be attached to a carbon atom belonging to a single
carbocycle. From this definition it may be seen that

most aromatic hydrocarbons can be embedded bi-uniquely
within a regular, two-dimensional, hexagonal lattice.

In certain instances, notably for mclecules such as
triptycene1 or the helicenesz, this is however not

always possible.

We shall use the term aromatic throughout the series
only in the above structural sense. Originally the word
was used to designate organic compounds having a charac-
teristic aroma3. Later the term was associated with
a particular type of molecular structure4'5, and, after
the proposal of the ring structure for benzenes, it
came to have the connotation benzenoid. Thereafter the
physico-chemical properties of aromatic systems were

711 and the term became associated

extensively studied
with certain of them: a characteristic reactive behaviour,
the possession of an additional stabilization energy,

and the presence of a considerable ring current.

As a consequence of quantum chemical investigations12’i3,

the term aromatic is now ascribed to a certain type of
the bonding. Ruedenberg14 has pointed out the existence

of relations between the topological structure of a mole-
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cule and the eigenvalue and eigenvectors of its MO's.
In our present approach however we make no reference

to any quantum chemical concept.

The Linkages in Aromatic Hydrocarbons

In order to ensure that our description of aromatic
systems will not be influenced by the terminology of
quantum chemistry, we shall not refer to bonds but
rather to linkages existing between atoms in these systems.
In the case of the benzene molecule, it will be evident
that three linkages terminate on each carbon atom: two
from adjacent carbon atoms and one from an attached hy-
drogen atem. Thus in benzene, as in other aromatic hy-
drocarbons, three linkages will always be assumed to
radiate from each carbon atom and one from each hydrogen
atom. Reference to the other extreme case, namely that
for an infinite sheet of graphite with no attached hy-
drogen atoms, leads to the similar conclusion that three

linkages will always terminate on each carbon atom.

A graph-theoretical representation of all the possible
different aromatic hydrocarbons containing up to four
carbocycles is presented in Figure 1. Each carbon atom
is depicted here by a single vertex, though for simplicity
in the representation no hydrogen atoms are depicted.
Graphs of the type shown in Figure 1 we shall designate
as constitutional C-graphs, whereas graphs depicting both
carbon and hydrogen atoms will be termed constitutional

CH-graphs. Our following characterization of aromatic
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hydrocarbons will be carried out without further reference
to constitutional CH-graphs. The number of constitutional
C-graphs containing a given number of carbocycles which
may drawn is in general not known. Studies in pure mathe-
matics, where such systems are known as hexominoes or

15,16

hexagonal animals, have revealed that a general

formula for their number will be difficult to obtain.
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A computer programme due to Lunnon17 has enabled computations
to be made for systems containing up to twelve hexagons,

and recently a general formula for a particular class

of hexagonal animal, i.e. those which are in the form of

unbranched chains, has been given by Rouvray18.

As may be readily verified from inspection of Figure 1,
every carbon atom in an aromatic hydrocarbon may be-
long to either one, two or three carbocyclic hexagonal
rings. The whole constitutional C-graph may be constructed
from such 6-member rings by edge fusions. As a consequence
of this whenever a carbon atom belongs to two or three
rings, we know that the rings are condensed together.
If the constitutional C-graph contains no vertex common
to three rings, the corresponding aromatic hydrocarbon

is termed cata-condensed or annellated19. On the other

hand, a vertex belonging to three rings will indicate

a site of peri-condensation, and the corresponding
aromatic hydrocarbon is then described as Eeri—condensedzo.
A discussion of the relevant nomenclature has been given

by Balaban and Harary21.

Whatever the type of condensation
present, it is evident that all aromatic hydrocarbons

will belong to the class of alternant hydrocarbons, as
defined by Coulson and Rushbrookezz. In graph-theoretical
terms this means that all the constitutional C-graphs

must be two-colourable or bipartite23.
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Formal Graph-Theoretical Description

As indicated above, any aromatic hydrocarbon may
be represented by a constitutional C-graph, and such a
graph we shall designate by the symbol A. The graph A
will be constructed from a set of vertices V, representing
the carbon atoms, and a set of edges E, representing
the linkages existing between the carbon atoms. We may

therefore define A as
A= [V, El, (1)

where V represents the set {Vj} and E the set {Ejk},

and the integers j and k are labels for the j th and k th
vertices respectively. All vertices Vj depicting carbon
atoms in the CH-graph are of degree three. In the hydrogen-
suppressed C-graph A, however, those vertices belonging

to only one ring will be of degree two, whereas those
belonging to two or three rings will be of degree three.
Since each vertex in A must be part of an hexagonal

cycle, no vertex therein can be of degree less than

two. Accordingly, we may assign the limits
2 <g. <3 (2)

to any vertex Vj of degree 95 in A.



- 69 -

If we denote the number of vertices of degree two by

Uge and that for those of degree three by ¢ it follows

3'
that the sum of these two numbers must equal the cardin-

ality |V| of set V, i.e.

vl =

|| o, + 0g. (3)
Since the degree of a vertex indicates the number of edges
terminating on it, and as each edge will terminate on two
vertices, it is immediately evident that the cardinality
| E | of the set E will be

| & =

(20, + 30,). (4)

By combining (3) and (4) it is now possible to obtain

the following expressions for 9, and 04t
o, = 3 |v] - 2 |E| (5)
03=2|E|—-2|U|. (6)

The result in (4) is a particular instance of the well-
known general theorem that the number of vertices of

odd degree in any graph must be even.

Let us suppose that the general aromatic hydrocarbon
possesses the empirical formula CaHb. As the graph A will

depict all the carbon atoms present in the species, we may
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write according to (3)
a = d, + a3, (7}

Moreover, since each vertex in A of degree two actually
represents a carbon atom bonded tec an hydrogen atom, the
value of 9, gives us directly the number of hydrogen

atoms in the hydrocarbon, i.e. we have
b = 95- (8)

It is well-known that the number of cycles contained
within such a molecular species may be obtained directly24
from the cyclomatic index r of its graph A. The index

r is defined as
r=]E| - |V +1, (9)

and for the species CEH may be easily shown to assume

b
the form

-1
r =303 +1. (10)
It is now possible, by making appropriate substi-

tutions of (7) and (8) into the equations (3} to (6)

and (10), to express all the parameters defined in these



-71 -

latter equations in terms of a and b thus:

i = = (1)
€| =3 (3a - b) (12)
o, = b (13)
o3 =a-b (14)
7 =%(a—b)+1. (15)

The RSle of the Characteristic Graph

To facilitate our further graph-theoretical description,
we utilize now the notion of a characteristic graph intro-
duced by Balaban and Harary21. For every constitutional
graph A there is a corresponding characteristic graph
which we shall denote as (. The graph C may be simply
constructed from A by placing a vertex in the centre
of each hexagonal cycle of A and then connecting those
vertices which are in adjacent fused cycles. From its
mode of construction C must be a connected graph and ac-
cordingly no vertex of degree zero can exist in it. As
not more than six hexagonal rings can be arranged around
a given central hexagon, the highest possible degree of
any vertex in C is six. We therefore obtain for the degree

dk of any vertex in C the range

e & - (16)
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As will be explained below, the graphs C cannot
be purely topological graphs as the vertices of C are
to be placed in the centre of each hexagon in A and
their positioning now becomes of importance. More

formally we may define A as

¢ = [ur K, el, (17)

where the vertex set U is the set {Uk} created by placing

one vertex in each cycle of A, K is the edge set {K .1}

k1l
formed by connecting the vertices Uk and U1 of adjacent
fused cycles, and 6 is the set of angles between incident
edges [25]. From the construction of C it is evident

that the cardinality of the set U must equal the cyclomatic

index r for A, and hence we may write

U] = u = r. (18)
Similarly, the cardinality of the set K will equal the
number of condensation sites for cycles present in A and,
remembering that C must always be connected, we obtain

the ineguality

|[K| =k > u = 1. (19)
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The reasons of completeness we give the cardinality
of the set 6

jul

le] =1 @y - 1 =2« [K| - |Ul (20)
i=1

In Figure 2 the characteristic graphs C corresponding
to each of the constitutional graphs A in Figure 1 are
presented. It will be readily seen that certain of the
graphs C do not differ in their topological structure,
namely the pair CIII and CIV and also the quartet CVI'

C £ and CIX' The former pair are both constructed

VII' “VIILI'
on three vertices and have two edges, whilst the latter
quartet all have four vertices and three edges and no
branching. The topological graph corresponding to the
pair is the snake graph 33, whereas that for the quartet
is the snake graph S4+. The differences between the
graphs in the pair and those in the guartet are expressed
by the difference between the respective angle sets.
Using the convention proposed in [25] all the angles

are multiples of 7w/3 radians. If all edges are depicted
by a line of unit length the vertices of C will be sited
on the points of a lattice, which may be visualized as

an infinite planar array constructed from regular tri-
angles. In this lattice edges can be drawn from a given

point to a nearest neighbouring point only.

u Snake graphs Su are unbranched tree graphs, and accordingly

may be sufficiently characterized by their number of

vertices u.
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The Equivalence of Characteristic Graphs

Two characteristic graphs are equivalent if and
only if there exist a bijective mapping between the
respective vertices, edges and angles. The first
two conditions are normal for the existence of iso-
morphism in two graphs and reflect the topological
content of the graphs C. On the other hand the third
stipulation arises from the fact that the characteristic
graphs are truncated geometric duals [25]. The angles
formed at the vertices U2, U3, and U4 of the graph C(O)
will be respectively 120°, 240°, and 240°, if they are
read in the clockwise sense (Figure 3). If one maps
bijectively C(O) onto C(3) the sense is maintained but

(0) el o o2

if one maps bijectively C onto either or

the sense is reversed.

The Modes cof Condensation

We consider now the possible sites on an aromatic
hydrocarbon molecule at which condensation of a new
ring may take place. Such condensation can occur in only
two ways, namely either at two ortho-located carbon atoms,
as illustrated in Figure 4(a), or at two peri-located
carbon atoms as shown in Figure 4(b). The first type
of condensation we have referred to as annellation or cata-

condensation, and the second as peri-condensation. In
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the former case we may speak of a linear or of an angular

a)

Figure 4

annellation, according as the new edge in C forms an
angle of 180° or + 120° with an existing edge. Peri-
condensation will always give rise to a mutual angle
of + 600, and therefore to a cycle of length three in
the characteristic graph, as may be seen for instance
in Figure 2.

from inspection of the graphs CV’ C and CX

& I
Thus, just as a vertex commen to three hexagons signi-
fies a site of peri-condensation in A, the presence of

a triangle will indicate such a site in C.

By definition the characteristic graphs of cata-
condensed systems cannot contain any cycles of length
three, and so the only possible mutual edge angles in
their graphs C must be 180° or + 120°. From this fact
it follows that the degrees of vertices in such graphs
must equal either one (for terminal hexagons), two (for
adjacent hexagons with no branching), or three (for
adjacent hexagons with branching). Clearly the three

edges incident at a vertex of degree three will be at
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mutual angles of 120°. as pointed out by Balaban and Harary21,

cyclic cata-condensed systems may also be constructed (for
examples see Figure 5). Since it is not unreasonable to
expect that the chemistry of these compounds, the so-called
coronaphenes, will be analogous to the well-known acyclic
cata-condensed systems rather than to peri-condensed
systems, we prefer to call such systems cyclic cata-

21
condensed or corona-condensed” .

The number of vertices in the cycles formed in
corona-condensed species must always be greater than
six. If only six vertices were to be present, these
would have to be arranged in the form of a regular
hexagon. The lattice point at the centre of this hexa-
gon, however, would also necessarily belong to the graph,
and so the resultant characteristic graph would be that
of coronene, as may be seen from Figure 5. Since the
latter molecule is peri-condensed, a graph constructed
in this way clearly could not represent a cata-condensed
system.

The above reasoning leads us to the conclusion+ that

the smallest possible cycle which may exist in the charac-

T This conclusion is true only for aromatic hydrocarbons

which may be embedded within a regular hexagonal, two-di-
mensional lattice. Non-embeddable species, which in general
do not satisfy the above conditions, have been discussed else-

where by one of the present authorszs.
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teristic graph of a corona-condensed species must be of
length £ = 8 (see Figure 5(b)). As may be seen, enlargement
of the length of a cycle in a corona-condensed species
by two may be readily achieved. The vertices of these
cycles will lie on at least three pairs of parallel
lattice lines, and addition of one extra vertex to each
line in such a pai) results in the enlargement of the
cycle by two vertices. As cycles of length f = 8 and

f = 9 can be drawn, all cycles having f > 8 can be
constructed. To distinguish these cycles from triangles
indicatincg sites of peri condensation, we shall term

them coronae.

Some Relationships Between the Constitutional and Charac-

teristic Graphs

We investigate now the relationships existing between
the characteristic graph C and the empirical formula CaHb
of a given aromatic hydrocarbon. Because in the construc-
tion of the characteristic graph one vertex is assigned
to each hexagonal cycle in the constitutional graph A,
the number a of carbon atoms contained within the
aromatic hydrocarbon cannot exceed 6u. Within this 6u
carbon atoms belonging to two or three rings will have
been counted respectively twice or thrice. In the charac-

teristic graph of a cata-condensed aromatic hydrocarbon
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each edge K represents such a pair of doubly-shared

1m
carbon atoms, counted twice; thus we may write for the

number of carbon atoms in these systems

a = 6u - 2k. (21)

The triply-shared carbon atoms represented in the charac-
teristic graph of a peri-condensed system belong to three
such pairs. Thus, in subtracting 2x from 6u each of the
triply-shared carbon atoms is taken into account once

too often, and we obtain instead the equation

a = 6u - 2k + ¢, (22)

where t is the number of sites of peri-condensation.

In order to express both 02 and o3 of A in terms
of the parameters k, u, and t, it is necessary first
to derive an expression for the number of edges con-
tained in A . From our reasoning above we know that
this number cannot exceed 6u. As each edge of the
characteristic graph C crosses one edge in A which is

counted twice in the 6u, we must subtract from the 6u

the number of edges in C. We then obtain the result
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|E] = 6u - k. (23)

Use of equations (5), (22) and (23) now enables us to

formulate o, as

2

Oy = 6u - 4k + 3t. (24)

The corresponding result for ag is obtained using equations

(6), (22) and (23), viz.
0, = 2k = 2¢t. (25)
Because of the relationship existing between the
characteristic graph C and the constitutional graph A,
there should be a relation between the parameters k, u,
and t. To derive this relation we shall make use of the
cyclomatic index p of C, which is defined as

W=k=-u+ 1. (26)

The parameter y yields the number of independent cycles+

T By an independent cycle is meant any cycle having at

least one edge which is not contained in any other
cycle in the graph.
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in C. Thus, if there are X, independent cycles of length

f in C we may write

I x, = u. (27
£ f

From earlier reasoning we know that for any characteristic
graph embedded within its triangular lattice f may assume

only the values
£ = 3, 8, 9% 105 savans (28)

We may therefore split the summation in equation (27) into

two parts as follows:
Lx,=t+%, (29)

where t equals x3, and X is the number of coronae in C.

Rearrangement of (29) gives the result that
t=k-u+1-7x. (30)

The parameter X will normally be zeroc for the simple

reason that coronaphenes have not yet been synthesized.

Now the ten parameters which have been introduced
above may be assigned to six groups, viz. t; X3 | E ] and
|v]; 0, and 04; u and k; and a and b. The basis for this
classification will be evident from the following reasoning.

Both the parameters ¢ and X refer to A and C, though X



- 83 -

is an independent parameter as it gives the number of
coronae. The two pairs |E | and |V| and o, and o, relate
only to A. The pair u and kx refers only to C, whereas the
latter pair a and b refers to the empirical formula.
Since a given aromatic hydrocarbon may be represented

by X and any of the above pairs, the seven remaining

parameters can always be expressed in terms of those

chosen for the representation as shown in Table 1.

It should not be forgotten that the sets of equations
given in Table 1 are all subject to certain conditions
which arise gquite naturally from the topology of the
systems investigated here. It is in particular necessary
that (i) for t > O we always have u > 3; (ii) for x > O
we have u > 8; and (iii) for both ¢ > O and X > O we
have u > 9. It should be mentioned that x = 0 for all

known species,

The Ratio of Carbon to Hydrogen Atoms

We turn our attention at this point to the relative
numbers of carbon and hydrogen atoms to be found in the

various aromatic hydrocarbons CaH From the results

b°
given in Table 1 for the chosen pair u and k, we know
that

b 2u + 4 - t - 4x (31)

a 4u + 2 - £ - 2X,
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Upper and lower limits for this ratio may be obtained

in the cases when u equals one or tends to infinity re-

spectively. Thus the quotient (31) has the range

The upper limit is attained only in benzene and the

lower limit in a single layer of graphite.

It should be pointed out that a particular value
of the ratio b/a may correspond to various subclasses
of aromatic hydrocarbons. For example with b/a = 1/2

we obtain from (31)

4u + B - 2t — BXx = 4u + 2 - t - 2X.

If both t and X have finite values this equality is
maintained even for an infinite value of u, and this
will correspond to any infinite condensed aromatic
system containing only finite numbers of either sites
of peri-condensation and/or coronae. For finite u it

follows that

t + 6X = 6.

(32)

(33)
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Equation (33) has two acceptable solutions: the first

t =0 and x = 1, corresponds to mono-cyclic cata con-
densed systems (mono-coronae), and the second, t = 6

and X = 0, to any non-coronaid condensed aromatic system

containing exactly six sites of peri-condensation,

A general expression for the ratio b/a in peri-

condensed

cvmv-#:%ﬁ-%-uv:%ﬁaa-ﬁ- A':',
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ea*&a'g'a'rf/gg‘xA'A‘A’A*AQA‘AA%'.’A&'AQA‘A%

Figure 6

molecules in the form of long strips may be derived in
terms of the number of benzene rings p in the top row
and the number of rows of benzene rings g in the strip.
A typical section of such a strip is illustrated in
Figure 6. From inspection of this figure it is evident
that the number of sites of peri-condensation t within

the strip will be given by the expression

t = (2¢g - 2)p. (34)
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The number of vertices present in the characteristic

graph of the strip molecule will be given by

u = g.p. (35)
Substitution of these particular values of t and u
into (31) yields the general result
b 2p + 4 - 4X
- = — (36)
a (2¢g + 2)p + 2 = 2x.
Clearly when the strip closes on itself to form a
single cycle the ratio will assume the simple form
(37)

a result which is independent of the number of rings

in the top row.

This paper may be cited without permission.
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