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During the microsymposium on graph theory in chemistry
which gave rise to the publication of MATCH it turned
out that graphs and their enumeration are a useful con-
cept in chemistry, so that it seems worthwhile to con-
tinue the introductory remarks on this theory which I

made in MATCH 1.

Being a mathematician, my main task seems to me to be
that I should point to mathematical concepts which can
be used successfully in this context. The methods which
can be recommended should on the one hand be general
enough so that they cover the problems arising in ap-
plications (as far as I know them) and on the other
hand they should not be too general, so that the neces-
sary mathematical tools are familiar enough to the peo-

ple who might like to apply them.

Thus let me point out, how Pélya's enumeration theory
can be comprised in representation theory of finite
groups and in particular of symmetric groups so that
character tables and all that turn out to be useful
tools here as well. I should not forget to mention
that this embedding of enumeration theory into re-
presentation theory raises some hitherto unsolved prob-

lems in representation theory.
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Before we start, let us recall from part I that we
are dealing with given finite sets X and Y and

that we consider the set
o 1T E 2T %

which consists of all the mappings f from X to
Y. Furthermore, we are given a permutation group H
acting on X. This group induces an equivalence re-
lation "~" on Ve 1 Iy e YX is called equivalent
to f2 e YX (for short: f1~f2) if and only if there
exists a we H such that

£, = f2°ﬁ_1,
(where fyo 7 means composition of f, and ﬂ~1,
i.e. for each x e X : (f,e° ﬂ_1Xx) = fz(n-1(x))).
Our most prominent example was: If P denotes a

set of points, then we take X = szl

, the set of
pairs of points, put Y = {0,1], and take H = ngf,
the group induced by the symmetric group SP on the
set P*zf. In this case the equivalence classes can
be interpreted as the isomorphism types of graphs

without loops and single edges only.
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1. Formulation in terms of group theory

For a fixed w e H, the mapping

m: fefe 11_1,

which maps f e Y* onto fernle Yx, is a permutation

of YX, this is easy to see. Since for m,p e H:

fip = fp,
the elements 7 form a subgroup of the symmetric group

SYx on YX, which is homomorphic to H. This subgroup
is denoted by EH:

H ] ~
E=!nlnEHi§SX.
Y
If Y consists of more than one element, then EH is

even isomorphic to H.

In terms of this permutation group EH, the equivalence
class of f e Yx is Jjust the orbit of EH which con-
tains f. Hence by Burnside's lemma, which gives the
number of orbits of a permutation group as the sum over
the fixed points of its elements divided by the order of
the group, the number of orbits of EH, i.e. the number
of equivalence classes of functions is equal to

Lo eq(®),

~

m=E

g
1:1 —
I%|

if 51(3) denotes the number of functions fixed under

m. By the homomorphism theorem of group theory we see



=D

that 1.1 is equal to
1.2 L 5V ay(m,
lH] m=H
and it is not difficult to see that
ay(m) = Jy|°tm,
if
X|
o(m) = B} (m)
i=1
denotes the number of cyclic factors of n (recall from
part I that ai(n) denotes the number of cyclic factors

of mw which are of length i). We thus end up with the
result that

1.3 .. Z [yjem

31 e

is the desired number of orbits.
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2. Formulation in terms of representation theory.

In the preceding section we saw that our problem amounts
to a description of the orbits of the permutation group
gl on Yx. We can formulate this also in terms of re-
presentation theory if we consider the corresponding
permutation representation. This is a little bit more
complicated but it has the advantage that it comprises
more of algebraic structure since we are then dealing
with a permutation group which acts on a vector space.
It allows then to apply all what we know about repre-
sentations of finite groups.

The permutation representation corresponding to the

H on YX is defined as follows. We take

action of E
the free vector space over the field ¢ of complex
numbers which has the set YX as basis, i.e. we con-
sider the set of formal expressions

Ex Cff,

feY

where the coefficients Cy are complex numbers, where
two such expressions Tcgf and def are equal if

and only if for each f e Yx we have Cp = df, where
T cef + T dof =Te 4d, )T,
¢ f F f + higeak ¢

and, for c e €,

c Cff = Eg(ccf)f.



=

The elements f e Yx form a basis of this vector space
V (which is of dimension ]YX| = |Y|le), so that a

linear transformation of V 1is uniquely determined by
giving the images of the elements f e Yx. The linear
mapping of V onto itself which is associated with

is the mapping D(w), defined by
2A D) 3 £ ¥ Tom s

i.e, the element f of the basis of V is mapped onto
the basis vector faw_1. From the preceding section we
know that we have for the character XD of this repre-

sentation:
2.2 L(m) = Jy)eim,

An important fact which we can cite from representation
theory now is that we can decompose the representation
space V into a direct sum of irreducible invariant
subspaces which are (up to isomorphism) uniquely deter-
mined. These are called the irreducible constituents of
V. The equivalence classes [f]_ of Yx, i.e. the sub-

sets
[£], = {2y | & =¥, &)

of the basis Yx of V generate subspaces of V:

2:3 Ve = (£l
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Since each [f]_ is mapped onto itself under each
D(r), m e H, the subspaces V. are invariant. V is

a direct sum of these subspaces:

2.4 V= @& Vo= o (f]).
£=yX fe¥*

But these subspaces Vf are in general reducible, so
that this decomposition 2.4 is still not fine enough.
But already this decomposition is quite helpful. For
it is easy to see that each one of these subspaces con-
tains the identity representation I of H (which has
character YI(n) =1, for each 1 e H) exactly once.
Hence the number of different subspaces Ve, i.e. the
number of different equivalence classes [f]~ is equal
to the multiplicity (D,I} of I in D. But this
multiplicity (D,I) is just the inner product of the
characters:

8.5 D, Iis"= % 5P(rldln el 5 sPl)onml. 5 [y},
|H| me=H |H| meH |H| m=H

This gives 1.% again.



oy,

%, The irreducible constituents of D

We start considering the special case when H is equal

to the symmetric group on X:
H =Sy

In this particular case the decomposition of D into
its irreducible constituents is known. (In fact, this
representation D of SX occurs in general represen-
tation theory in a connection which is very important
for applications, namely the decomposition of Kronecker

powers of representations into symmetrized products.)

It is well known how we can associate the irreducible
representations of SX with ordered partitions

o= (d1, - ,qh) of |X| in such a way that represen-
tations associated with different partitions are inequiv-
alent. We denote the representation associated with
by [a] as usual. Then it can be shown that the fol-

lowing holds:

3.1 (i) [e], where a:(%,.-.,%) occurs under
the irreducible constituents of D if and

only if h < |Y|.
<>
(ii) The multiplicity f of [w] in D can
be evaluated as follows: If again
o= (aq. == '“%)' then

-
20 - LT (meg-1),
1<i<h

1=y
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where f% denotes the dimension of [a].

In the case when H 1is a proper subgroup of SX’ we
obtain the decomposition of the representation D of
H into its irreducible constituents from 3.1, if we
know the multiplicities ([&]{H,F) of the irreducible
representations F of H in the restrictions [q]}H
of the representations [a] of Sy to the subgroup
H of SX' These multiplicities can be obtained from
the character tables of H and SX' We then obtain
for the multiplicity of F in D:

3.2 (D,F) = 5 £ ([al4H,F)

-1
In particular,
5.3 o)== p f99dlnn.

o+-n
In order to evaluate ([g]{H,I) we may apply Frobenius'
reciprocity theorem which says that this multiplicity
is the same as the multiplicity of [g] in IH$ Sy,
i.e. representation of Sx induced from the identity

representation IH of H:

5.6 ([allB,1) = (IS, [o).

Let us consider a numerical example.



o B

It is well known that the character table of Sh

is as follows:

Class type: % 122 4 3 4 2
Order: 1 6 8 6 3
[4] 1 1 1 & 9 !
[3,1] 3 T B =1 4
[29] 2 0 -1 0 2
[2,1%] ¥ A @ 4 =i
[1*] 1111

The dihedral group D,, the symmetry group of the square,

has the following character table:

Class type:J1* 122 22 22 4
Order: 1 2 a 2 2
F 1 1114
F, 1 11 -1 -1
Fs 1111 -1
F), 1 -1 1 -1 1
Fo 2 0 -2 0 0




L o

These two character tables yield for the multiplicities

([aldD, ;)

([a.]J,Dq_,Fi) Fy F, F3 F, Fg
[4] 1 0 o 0
[341] 0o 1 0o 0 1
[22] 10 1 0 o
[2,1%1 o o o 1 1
[1*] 0 0 1 0 0

The £{® +turn out to be (we take m=3):

[o‘.] f(u)

(4]
[34]
[2%]
[2,4%]
(1"

ey
AS NN 1]

O w o =

This shows that the decomposition of the representation

D of Sh into its irreducible constituents is just
D = 15[4] + 15[31] + 6[2%] + 3[27%],

while the decomposition of its restriction to the sub-
group D,_} is

DyD, = 21-F1 + 15.F2 + 6F3 + 3F4 + 18F5
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The multiplicity 21 of F, shows that there are
exactly 21 equivalence classes of mappings from
{1,2,3,4} into §1,2,3} with respect to D, as
symmetry group. Let us illustrate them by corre-
sponding colourings of the square by the three

colours e« , © and x:

——.

[

(It is clear that the resulting number 24 can be ob-
tained much quicker as multiplicity of F, 1in the re-
striction D{H which has character

'XD(") = 3C(l‘l’)

as it is mentioned above. But we are interested in the

complete decomposition of D at the moment.)
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4. The introduction of S-functions

The reader knows that the enumeration theory yields
stronger results than the number of equivalence clas-
ses only. For the famous theorem of Pdlya says that
the number of equivalence classes of kind

(k1, Sdi ’k|Yl) (i.e. of functions which take k-
times the i-th element of Y, 1 < i < |Y|) is just
the coefficient of

k k
&l 1Yl
Y1 eee Ty

in the polynomial
4,1 Z(H l Yq teoot lel)-

This polynomial 4.1 arises from the cycle-index

polynomial
a,(m) ajy(m)
4.2 Z(H) = .J_Ex11 o 5 B
1Bl =y [x]
by substituting
y# oot yi
Y|

for X; in Z(H).

In order to show how 4.1 can be obtained from a re-
presentation theoretical consideration, we define a

generalization of 4.2,
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If F denotes a representation of H which has char-
acter XF, then we put

(m)
VT Ry 20m L xCX
4.3 Z(H,F) —-Eﬁ-Zégx (m) X4 x| .

A particular representation of SX is the representa-
tion IH*SX which is induced from the identity re-
presentation IH of H which was already mentioned
above. It is not difficult to show that the following
holds:

4.4 Z(H) Z(s

X? IHfo)

z(Sy, o (IHtsy, [al)l«d)
a-n
o (1Htsy, [al) Z (g, [ed)

-1

The polynomial Z(Sx,[¢]), which satisfies

()
z(8y,[al) = 1—E EUmTy * ven + 7, A
|x]1 ne=Sy Y|
Sie (y!xl+ ves + ylxl)alxl(“)
Il

is often denoted by {g}:

fa} = z(sg,[al).

These polynomials corresponding to partitions ¢ are

called S-functions.
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This altogether yields the result
4.5 Z(H | yq +.00t leI) = i::: (1HtSy,[el) fal,
ar|X]

which shows that the generating function for our combi-
natorial problem is a sum of S-functions which can te
obtained from the character table of Sx once we Know
the decomposition of IHfo inte its irreducible con-
stituents. If we again consider ID,._}{‘S,+ as in the pre-

ceding section, we already know

DS, = [4] + 2%
so that

Z(D, | yq + ¥p + ¥3) = 14} + 12}
Let us remark that S-functions {¢} occur in representa-
tion theory as polynomial functions which yield character
values, For if GL denotes the group of all the non-
singular matrices oger the complex field which have [Y|
rows and columns and if ¢ = (qq, — 'dh) is a parti-

tion of |X| where h < |Y|, then {g} yields a certain

irreducible character {® of GL if we put for
Y

g € GL £
hq
4.6 W) » fulCey swen 5%, Vs
Y|
1t €y oo .el | are the eigenvalues of the matrix
g € GL .

[Y]
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There are not many subgroups H of symmetric groups
SX where IH‘}SX is known explicitly. But for the
alternating group AX =< SX we know for example that
the irreducible constituents of IAfox are Just the
identity representation and the alternating representa-
tion. Since [n] is the identity representation and

[1n] the alternating representation of Sn’ we obtain

4.7 (1) z(s, | yq +..c 4y ) = inls
(12) 2(Ay | ¥4 +... #y,_ )= In} + J17}.

Another prominent subgroup of Sn is the cyclic sub-

group of order n, Cn = ((1 ... n)), which is generated
by the cycle (1 ... n). The representation ICnfSn
ICnfSn
has the character y with value
ic {8 fc(m) nc |
4.8 " n(") - g_! pe = ’

where C(n) denotes the conjugacy class of n e Sn‘
me Sn is contained in Cph» at most if yw con-
sits of n/i cycles of length i, i a divisor of n.
In this case we have
[c(m) ncyl = (1),
¢ the Euler function, i.e.
¢(1) = |1k | ke N, k <1, (k,1) = 1},

where (k,1) denotes the greatest common divisor

of k and i.
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This gives for the multiplicity of [e] in IC 45, :

I ts
1—.' : el 0
‘|1E

4.9 (ICpS,[u])

]

I
Sl

E o1 [c(m) nc, |
= ) T

[l
514

| ¢(i) E( n/l

where ca

/i denotes the value of the character
i

c“ of «] at an element consisting of n/i cyclic

factors of length i.

This altogether yields:

4.10 z(c v = .
(Chlyq+ +yIYI) i%n n q ()™ n/i))lwl

i, o
= = 1) % T
H iin o )uhnc(i /J')t !

A useful result on symmetric polynomials which may be

applied now is

4.11 1f we abbreviate
i i
S. = Vat e +¥
1 1 IYI
(this symmetric polynomial is called power sum
symmetric function), and put for a partition

£=(Bgr +oe 48) of [X]

s_ =5 -5 viww * 8
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then
S, = o tSlal
g o n g :
where cg denotes the character of [a] at an
element with cycle decomposition (g4, ... ’Bk)
in SX‘

An application of 4.11 to 4.10 yields the well known

result

.12 z(C lyq+ ... +Y|Yl) = % g?n¢(i)sg/1.

This result is of course well known and can be obtained also
directly from the cycle structure of Cn. But I stressed the
fact that it can be obtained via representation theoretical
considerations since representation theory yields much more
in particular if we consider situations which are more gene-
ral than this Pélyatype situations as it will be shown in a

subsequent part of this paper.

Let me conclude by giving a few references which contain more

details on applications of representation theory to enumeration.

H.O. Foulkes: On Redfield's group reduction functions.
Canad, J, Math., 15 (1963), 272-284
On Redfield's range-correspondences.
Canad., J. Math. 18 (1966), 1060-1071
Linear graphs and Schur-functions.
Conf. Comb. Math., Oxford 1969

A. Kerber: Characters of wreath products and applications to
representation theory and combinatorics.
Discrete Math. 13 (1975), 13-30
Representations of Permutation Groups II.
Lecture Notes in Math. 495, Springer-Verlag 1975



