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ON GRAPHS AND THEIR ENUMERATION

A. Kerber - Rheinisch-Westf&dlische Techn. Hochschule, Aachen

Already in the nineteenth century it was recognized that chemical
molecules can be described in a sense by graphs, the points of which
represent the atoms, and the lines of which represent the bonds. And
very soon the question was raised, how many such graphs cxist which
are essentially different but which illustrate in this way molecules
with the same brutto formula. This was before mathematicians really
started developing graph theory so that in fact one may say that
considerations of chemists initiated the theory of graphs and the
theory of their enumeration.

The problem of enumerating and constructing all the different graphs
which represent molecules wi th a given brutto fomula is still far
from a satisfactory solution but along mentioning the basic concepts
of the theory of graphs and their enumeration I would like to show
how at least it can be attacked.

In order to do this we need at first state this problem in terms of

a mathematical concept which is flexible enough sc that it covers the
various graph theoretical concepts which are used in such applica-
tions of graph theory as there are the usual graphs with undirected
lines, without loops and without multiple lines or as in other cases
the multigraphs which have undirected lines and no loops, too, but
where multiple lines are allowed,as well as it should cover the con-
cept of directed graphs and graphs with loops.

It will turn out that the concept of enumeration of symmetry types
of functions between two finite sets yields what we need in each
case if the two sets are suitably chosen.

1. Functions between finite sets

We assume that we are given two finite nonempty sets, say X and Y.
We denote by YX the set of all bthe mappings f from X to Y, for short:

T - f2 | £ipar)s

Example: Let P:{p,q.r,s} denote the set of points of a labeled graph,
say of
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Fig. 1
We take for X the set P‘gsof the 6 pairs of points, i.e.

X = {( p,qlylpgl‘l,IP:SIJq,rl,fq,Sl,(r,SI} .
For Y we take
T - {0,1].
Then a mapping f:X-Y may be considered as the labeled graph which
has P as point set and where f(x)=0 if and only if the pair x of points
is not connected and where f£(x)=1 if and only if the pair x is con-
nected. Then e.g. the function
{pyal 1 [q,r]Hq

f: {p,r}>0 {rysj—1
{pys] 1 {d,s} 1

yields the graph of fig. 1.

But this concept covers not only graphs with no multiple lines. Just
by extending Y,multiple lines may come in.

Exzmple: We take P and X=P!2} as above, but now we put Y={O,1,2] and
see that

(pral =2 ¢ 0
f£: [p,rj+—>0 [r,sj =1
{pys}=1 la,sf= 1
yields the multigraph of the Kdnigsberg bridge problem:
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Fig. 2

It is clear that by taking x=P121 and Y=[{0,1,...,k} we obtain multi-

graphs with up to k-fold lines, Still loops do not occur. But once

we take for X the union of PEzl and P, i.e. if we put K:Ps2iu P and

Y:IO,ﬁ,...,xIIthe k~fold lines as well as k-fold loops may ocecur like
in
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2. Symmetry types of functions

We are mostly interested in unlabeled graphs so that we are not wil-
ling to distinguish the following two graphs
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which arise from the functions
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by Jjust delabeling.
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We first notice that we obtain £, from £, by permuting the points q
and s or by exchanging the pairs of points

{pya} and  [p,s]

{q,r} and fr,s}.
In other words, f5 is the same as first applying a certain permutation
wonto P = and then applying fq, i.es f2=f1°t.

This leads to the following definition: Once we are given & permu-
tation group H on X, the two elements PRI in ¥¥ are called
equivalent with respect to H (for short: 1~ f2) if and only if
there exists awin I which satisfies

fa = 1,

Example: We take again P={p,q,r,s} and x=p'® ang Y={0,4,2]. And
we ask, how H has to be defined in order that f, and £, are equiva-
lent if and only if they represent the same graph.

Two labeled graphs with the same set P of points represent the same
graph if and only if one of them can be obtained from the other by a
permutation & of P.

o,
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The permutations ¢ of P form the sim?etric group SP of P and they
2
P

induce permutations T of the set of the pair~ of points. E.g.



¢ of SP induces ® as follows: If x, y are elements of P, theawe de-
fine ® by

®ix,y} = {«(0), =y} .
The group of all the w's is denoted by SéE and called the pair group
corresponding to Sp.
Hence f1 and f2 of Y represent the same graph if and only if they
are equivalent with respect to the pair group ngl.

pl2

Let us return to the general case, where Yx is considered together

with a permutation group H on X and the equivalence as defined above.
The equivalence relation dissects YX completely into pairwise dis-
joint subsets, the equivalence classes or better say the symmetry
types of functions from X to Y with respect to H.

Using this notation we are now in a position to give a precise defi-
nition of graphs:

Definition: The graphs with point set P, without loops and with up to
k-fold lines are the symmetry types of functions f from X=P12} to

o2
Y=§0,1,...,k} and with respect to the pair group H = SP“E.

How graphs with loops can be defined in this way is now obvious, also
how directed graphs can be defined (instead of the set Pia} of un-
ordered pairs choose the set P2 of ordered pairs of points).

3. Enumeration of symmetry types

The definition of graphs with point set P at the end of the preceding
section has shown that it is of interest to attack the following
three enumeration problems concerning the symmetry types of functions
f in YX with respect to a permutation group H on X:

(1) Evaluate the number of symmetry types.

(1i) Evaluate the number of symmetry types of prescribed kind
(kﬂ""’lel)’ where ki denotes the number of values which are
equal to y.eY.

(iii) Construct for each type of prescribed kind (kﬂ,...,k‘YI) a
function of that type.

These problems are of increasing difficulty.

The first problem is solved by Surnside's lemma, which gives us the
number of orbits of a permutation group. It says that the number of
symmetry types is equal to
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where bq(t) is the number of functions feY™

which satisfy
P =foX,
If =€H is a product of c(%x) cyclic factors, like e.g.
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is a product of 3 cyclic factors so that c(®)=%, then it is easy to
see that
by(R) = (1109,

Hence the number of symmetry types of Yx with respect to H amounts to
1 vle(w®)
Y g 1.
This is the well known solution of problem (i).

Problem (ii) is solved with the aid of the cycle-index polynomial
which corresponds to H: () )
a,(w a ™
1 1 X\
Z(H) = 1= X see X

(H) Hi E{ 1 1X] 2
where ai(t) denotes the number of cyelic factors of T which are of
length i, for 1<ic |X|.
If in this polynomial Z(H) we substitute the polynomial

yi + sea + yTYI

for Xy, We obtain the polynomial

a4(x) (x|

- a (x.
Z(H\y1+...+yl“) = ‘—II],—\ MZH le*""*ﬂn) ...(y,l +...+y:‘ﬁ) 1l

and the famous theorem of Pblya says that the number of symmetry types
of Ffunctions of kind (k’l""’lel) is just the coefficient of

k k
134
T =i 2y

in Z(th1+"'+ytY|)'
Hence problem (ii) is solved once we know the cycle-index of H.

Problem (iii) is the most difficult one as well as the most intere-
sting one.

It can be shown that one can obtain a complete system of representa-
tives of symmetry types of kind (kﬂ,...,le() from a complete system
of representatives of so-called double-cosets
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of Skr eee X Slel and H in Sx. Skﬂx...x.slel is a direct product

of symmetric groups Sk , and the double-cosets are the following sub-
sets of the symmetric lgroup SX on X:

S Xeew H={(8] § =oyp, 2eS, x... JpeH}Y .
ke xskmu 1 BFy Be £ xskm par}

There are in fact algorithms available which yield such systems of
representatives of double-cosets. They are quite complicated to
implement and need big computers.

Using such a program one may start with first constructing a com-
plete system of graphs with prescribed multiplicities of bonds and
then extract from these the ones which are of interest for the
applications in gquestion.

This is of course a huge waste of computer time but it shows how the
problem can be embedded in the mathematical concept of enumeration
of symmetry types of functions. If one is interested in a special
problem like enumeration or even construction of a certain kind of
isomeres say, one of course should try to attack the problem directly
so that no graphs will be constructed which have to bee thrown out
later on. Still one step will be a construction of symmetry types,
as can be seen from the papers published by the people from the
Stanford group which are given below.
Brown, H./Hjelmeland, L./Masinter, L.: Constructive graph labeling
using double cosets. Discrete Math. 7 (1974),1-3C.

Brown, H./Masinter, L.: An Algorithm for the construction of the
graphs of organic molecules. Discrete lath. 8 (1974),227-244



