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1. Introduction

This will be a very personal account of some chemical applica-
tions of graph theory, namely those of interest to the present
author. During the University (1949 - 1953) and Ph. D. years
(1953 - 1958) with C.D. Nenitzescu, I gave much attention to
the problem of aromaticity, which became enhanced by the
discovery of a new synthesis of pyrylium salts1 which are
benzencs with the highest possible single perturbation,

namely an ot heteroatom; on the experimental side I predicted
as early as 1955 some of the boron-containing aromatics
(brilliantly developed subsequently by M.J.S. Dewarz), and
synthesized boroxaropyrylium A in a later research on hetero-

cyclic organoboron compounds.4

2. Aromatic compounds

On the theoretical side, I attempted a complete systematiza-
tion of all-possible monocyclic aromatic compounds consisting

of First-Row elements.5 By grouping the atoms forming the
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aromatic ring into three groups, X, Y, and Z according to
whether the number of pi-electrons in their pz-orbital was 2,
1, or O (Pauli's principle excludes other possibilities),

the problem was decomposed into two partial ones: a table of
possible atoms or atom groups, and an algebraic-combinatorial
problem of constructing all possible m~membered xnyzz rings
satisfying the equations (the second one being the expression

of the Hlickel rule) :

m X +y+z

4n + 2 = 2x + ¥y

For each algebraic solution, a combinatorial problem arises
of finding the number of isomers. In collaboration with S.
Teleman,5 a formula for this number of isomers was found.
This was in fact the first graph-theorectical problem I was
confronted with, though at that time I was unaware that "I
was speaking in prose without knowing it". In graph theory
this "necklace problem" (the enumeration of isomeric neck-
laces consisting from beads of different colour) is
elegantly solved by applying Polya's counting theorem. This

was done later,6 in collaboration with F. Harary.+

+ 1In the same paper,5 Pblya's formula was extendended to bi-
cyclic systems. However, as observed independently,7 the
extension leads to erroneous results in the case of the

naphthalene skeleton: Pdlya's formula gives 329 isomers

rsszt2 and 807 r4s4t2, whereas actual counting yields 330

isomers rbszt2 and 810 isomers r4sqt2. No reasonable ex-

planaticn was yet found for this discrepancy.
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An extension of these ideas arose when imposing adjacency
restrictions such as not allowing adjacent Z-type atoms, or
both Z-type and X-type atoms.5 The mathematical treatment be-

comes much more involved, but was solved recently by Lloyd.8

This purely topological approach to encompassing mono-
cyclic aromatics was refined by assigning electronegativity

values to each atom type, leading to an overall "aromati-

9,10

city constant" of the ring which provides a semi-

quantitative measure of the stability and reactivity of the

ring, allowing a more exact definition of Il -excessive,

n-deficient and [I-equivalent aromatic heterocycles.11

Interestingly, Y-type atoms are the same ones which can form

triple bonds, and this systematization allowed the predic-

12 later verified,13 of a missing molecule with triple

2+
2 -

tion,

bond, namely the dication O

3. Pdlya's theorem

Another straightforward chemical application of the cele-
brated Pblya's theorem is to enumerate isotope-isomers.
Again, an extension of Pbdlya's formula was necessary when
two labels may be attached to the same vertex of the graph
(i.e. carbon and hydrogen labelling).

The column "Textbook Errors" of J.Chem.Educ. recently
featured a paper on the number of substituted porphyrin

isomers. '® The paper had itself an error as noted indepen-

7,17,18

dently, which can easily be corrected by application

of Pdlya's counting theorem. '’
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Other recent applications of Pblya's theorem for organic

and inorganic isomer enumeration appeared recently.20'21

4. The interplay between chemistry and graph theory

One of the three sources of graph theory was organic che-
mistry, through Sylvester's and especially Cayley's attempts
to enumerate alkanes (the other two origins being mathe-
matics through Euler and Jordan, and electrical networks
through Kirchhoff).22 Just before Mendeleev's and Kekulé's
discoveries, Auguste Comte could state that "all attempts
to bring chemical questions into the domain of mathematics
must be regarded as profoundly irrational and antipathetic
to the nature of these phenomena". However,only few years
later (in 1878) Sylvester could write "By the new atomic
theory, I mean that sublime invention of Kekul& which
stands to the old in a somewhat similar relation as the
astronomy of Kepler to Ptolemy's, or the System of Nature
of Darwin to that of Linnaeus. Like the latter, it lies
outside of the immediate sphere of energetics, basing its
laws on pure relations of form, and like the former as per-
fected by Newton, these laws admit of exact arithmetical
definitions” ...". There is a wealth of untapped mathemati-
cal potential contained in the patient and long investi-
gations of our chemist fellows".

Nowadays, when graph theory possesses a powerful arsenal



of concepts, methods and theorems, it can provide in reverse

a considerable help to solve chemical problems.

Graph theory is an essential tool for definition, syste-
matization and enumeration of chemical compounds. In addition,
it helps for codification and nomenclature purposes. The
interplay between chemistry and graph theory continues, how-
ever because some problems posed by chemistry are unsolved

graph-theoretical problems, as will be shown in the sequel.

5. Teaching rigorous chemistry

The time is ripe for chemistry to become more than a
collection of compounds, properties and reactions, namely

a coherent unique logical system. Attempts towards an axiom-
atic approach to chemistry have already been made.z}.26

More critical is the spirit of chemical textbooks, which

is far removed from the rigor prevailing in mathematical

textbooks.
The fact that there exist two isomers C4H1O and three iso-
mers C5H12 should be correlated with the mathematical

demonstration that there can only exist two and three non-
isomorphic trees with four vertices; analogously, the
existence of two and only two isomers C,HgO should be
correlated with the existence of only two non-isomorphic

chains C-0-C and C-C-0.
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6. Valenes and cubic graphs.

Valence isomers of annulenes (for short these will be

called n-valenes) are hydrocarbons with formula (CH)n, with

n being an even number. Benzene is one of the 6-valenes,
cyclooctatetraene is one of the B-valenes. Historically, the
first valene which was not a cyclopolyene is the "Nenitzescu
hydrocarbon" (CH)1O' This field became an exciting one after
the discovery of the fluctuating properties of bullvalene
(CH)1O, and after the syntheses of 6-valenes: Dewar-benzene,
benzvalene, benzprismane, bis(cyclopropenyl). *

On realizing that all formulas of valenes are cubic (i.e.
regular graphs of degree three) or trivalent multigraphs, and
that their enumeration was an unsolved problem of graph theory
in 196627 (recently an unpublished solution was found by R.W.
Robinsonza), an algorithm was developed29 for constructing
these graphs. The numbers of possible n-valenes are presented

in table 1 for n = 4-12.30

+ These, with benzene, are the only possible planar (in the
graph-theoretical sense) cubic graphs with six vertices.
Nonplanar graphs like the diagonal Claus formula for benzene
(Thomsen graph) cannot exist as stable molecules and are not
counted in table 1.



Table 1. Possible and known (1974) n-valenes (CH)n

n 4 6 8 10 12
Possible 2 5 17 71 357
Known2 2B 5 10 23 10

v

At the end of 1974, ignoring geometrical isomerism

[

Unstable molecules

Two striking facts emerge from this table : the number of
possible n-valenes increases very rapidly with n, and soon
most of the possible n-valenes will be prepared.

A graph-theoretical definition31_33 of n-valenes can be given
based on the idea of cubic graphs. So far, since the syste-
matic IUPAC (Bayer) nomenclature system for these polycyclic
systems is very cumbersome, most of the n-valenes were given
trivial names. However, tabel 1 clearly shows the necessity
of devising a systematic naming system instead of trivial

names. One such proposal is a code giving in order:

- the number of double bonds (circuits with two vertices)

= = = " three-circuits (cyclopropane rings)

w1 B " four-circuits (cyclobutane rings)

- a serial number s which is 1 unless there exist more
than two valenes with identical quadruplets of the
previous numbers. In the latter case, s takes integer
values starting with 1, ordering these valenes accor-

ding to the increasing number of 5-circuits (and
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additional criteria such as 6-circuits when the num-
bers of 5-circuits are identical).

7. Valene derivatives

Heteroanalogues of valenes, such as wvalence isomers of furan
whose graphs contain vertices of degree two (instead of all
degrees equal to three as in valenes) can also be encompassed
by means of cubic graphs, namely general cubic graphs which may
also possess loops.34 A vertex of degree two then results if
one loop and its point are removed. Homovalenes, e.g. valence

isomers of tropylidene or cyclopentadiene, are found by the

same procedure: numerical results are presented in table 2.35
Tablse 2. Planar general cubic graphs with one loop
n2 3 5 7 9 1
Possible 1 4 18 96 502

2 The number of vertices remaining after
removing the loop-point.
Benzoannulene valence isomers can be counted by a similar
algorithm.36 An analogous code was devised for specifying the

annelation in the case of valence isomers of benzoannulenes.

If vertrices of valenes are labelled (by means of heteroatom
substitution, e.g. valence isomers of pyridine, or by means

of substituents, e.g. valence isomers of toluene) the number

* For analogous systems with heteroatoms corresponding to
general cubic graphs n is followed by a digit indicating
the number of loops (circuits with one vertex).
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of possible isomers increases considerably. This number is
found by applying Pblya's theorem, starting from the symmetry

(i.e. cycle index) of each graph.37

The analysis reveals that
several valenes may possess the same cycle index. The smallest
such case is of benzene and benzprismane derivatives (ignoring
the stereoisomerism of the latter). This observation has a
historical interest, since the controversy between Kekul& and
Ladenburg around the benzene formula was based on the number
of possible isomers. Many more such coisomeric graphs were
found for 8-valenes and IO—valenes.37
Degenerate Cope rearrangements of some n-valenes like bull-
valene are possible: a complete analysis of all possible

cases for n £ 12 was made.38

8. Benzenoid polycyclic hydrocarbons

Polycyclic hydrocarbons formed from n condensed benzenoid
rings ("polyhexes" for short) are the most important car-
cinogenics; they are traditionally classified into two
classes: catacondensed ("n-catafusenes") which do not have,
and peri-condensed ("n-perifusenes") which do have points
common to three benzenoid rings. There can exist only one
2-catafusene (naphthalene), but two 3-catafusenes (anthracene

and phenanthrene) and one 3-perifusene (perinaphthenyl). By
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means of the dualist graph % (consisting from the points
corresponding to centres of hexagons, connected by lines
whenever two hexagons are condensed), a new, more comprehensive
definition of cata- and peri-condensation can be given: dualist
graphs of catafusenes are trees, and of perifusenes contain
circuits.39 Under this definition, all n-catafusenes are iso-
meric. Perifusenes are more difficult to handle and their
enumeration is another unsolved problem of graph theory,27'28
called the "animal cell growth problem”", in this case for
hexagonal cells. Only a computer enumeration was feasibie.4o
Catafusenes can, however, be enumerated by means of recurrence

formulas: the formulas are simple for nonbranched systems,39

41

and complicated for branched ones. A numerical code

expressing the topology of the catafusene was proposed39
bhased on the three orientations of lines in the graphite
‘uttice,42 symbolized by digits O (for linear annelation as in
anthracene), 1 or 2 (for angular annelation as in phenanthrene).
Coding of a catafusene starts from a free end of the dualist
graph; the smallest number formed by the n-2 digits indicating
the geometry of the annelation is selected as the unique

code of the n-catafusene, This code can be used in the nomen-

clature of catafusenes, obviating the need to coin trivial

names: thus chrysene is [ 12 ] tetracatafusene, and picene is

* Unlike dual graphs, in dualist graphs angles are fixed
and no point corresponds to the external region.
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[1211 pentacatafusene.39 Branching can be indicated by round
brackets within the code,?? e.g. triphenylene is 1 tetra-

catafusene.

9. Topology of condensed polycyclic systems, resonance

energies, and the Hiickel rule

Interestingly, the topology of catafusenes, reflected in their
code, can be directly correlated with their resonance energy,
which depends linearly on the number of zeroes in the code.44
Topological correlations had already been advocated by Sahini,4b
and more recently by Trinajsti&, Gutman and coworkers.46

The reason for these correlations lies in the fact that, as

shown earlier,47

the Hilickel matrix has the same eigenvalues
(i.e. the same spectrum) as the adjacency matrix of the graph.
Otherwise stated, Hiickel's simple MO theory is a translation of
the molecular topology, for pi-electron systems, into an
approximation of the Schrddinger equation. Using various
short-cuts based on the Sachs theorem, Trinajstié46 devised
methods for finding eigenvalues without actually solving the

secular equation.

An obvious generalization of polyhexes was to enumerate all
isomeric non-benzenoid cata-condensed system5,48 for which an
analogous codification system based on their dualist graphs
was proposec.,

It was generally assumed that the Hliickel 4n + 2 pi-electron
rule, strictly valid only for monocyc:ic aromatics, could be

extended to cata-condensed systems such as naphthalene or
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azulene. We showed that this tacit assumption was erroneous,
and that there exist non-benzenoid cata-condesed polycyclic

hydrocarbons which fulfill the Hiickel rule yet lack closed

electronic shells.49

50,51

Similar conclusions were reached by other

authors.

10. Diamondoid hydrocarbons

A less obvious extension of the above ideas allows the classifi-
cation, counting, codification and nomenclature of diamondoid
hydrocarbons such as adamantane, diamantane and triamantane
which, being completely free of steric strain, represent
end-points of thermodynamically-controlled isomerizations.

Just as polyhexes are portions of the graphite lattice,
diamondoid hydrocarbons are portions of the diamond lattice.

On raising the problem into the third dimension, four
orientations of edges are possible in the diamond lattice,

53 Two classes

hence four digits (1,2,3,4) are used for coding.
(catamantanes and perimantanes) are similarly defined on the
basis of their dualist graphs being trees or cyclic graphs,
respectively. The code can be used for nomenclature purposes
to distinguish between isomeric systems (three isomeric

tetra-catamantanes and one tetra-perimantane which is not

isomeric with the former ones, are possible).

11. Cospectral graphs

For documentation purposes, graphs representing constitutional
formulas should be stored in memory banks of computers indepen-

dently of conventions regarding nomenclature and of a particular
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language. This is done on the basis of the adjacency matrix,
usually in condensed form.54 A search for other means

of translating a graph into an information which can be more
economically stored in computers led to the idea that the
characteristic polynomial or the spectrum of the adjacency
matrix could serve this purpose.55 It was shcwn56 by counter-
examples that many cospectral graphs exist, if the graph
igneores univalent atoms. It was then argued that if hydrogen
atoms are also taken into account the characteristic polynomial
could uniquely represent the topolegy of molecules.57 Again

counterexamples were given58'59

showing that this is not true,
so that by now no information short of the adjacencies can be

used for storing graphs in computer memories.

12. Isoprenoid structures

The importance of the isoprene rule needs hardly be stressed
for natural compound chemistry. A computer program was devised
allowing, for a given graph, the recognition of its being iso=-
prencid or not, and all possible decompositions into isoprene
submits.60 So far the program was tested only for mono- and
sesquiterpenoids (CTO and C15). The decomposition of graphs

into subgraphs (factors) of given order is a difficult problem

in graph theory.
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13. Enumeration and construction of all possible

constitutional isomers and stereoisomers

This is a central problem in organic chemistry, and the advent
of the mass spectrometer makes it necessary to devise a system
enabling one to construct all constitutional formulas corres-
ponding to the same molecular formula. For acyclic systems,

51 but

Lederberg and coworkers developed the DENDRAL program,
cyclic graphs were more difficult to handle. For smaller cyclic
graphs, an algorithm based on graphs of degree four or less was
devised.62 Recently, Masinter, Lederberg and coworkers

succeeded in elaborating a sophisticated program for the

exhaustive generation of cyclic and acyclic isomers.63

Though graphs are topological concepts hence symbolize consti-

tutional formulas, they may be put to use for raticnalizing

also stereoisomerism. After Pbdlya counted64 the chiral alkanes,

little progress was made until Harary and Robinson applied
these ideas to planar steric trees,65 and then to the chemi-

cally relevant problem of chiral and achiral alkanes and mono-

substituted alkanes.66

By analogy with an algorithm for counting all conformations

of macrocyclic rings superimposable on the diamond latt:ir:e,s‘1

all configurations of annulenes superimposable on the graphite

lattice were examined.67
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14. Infinite lattices

In all previous graphs, vertices symbolized atoms and edges
symbolized covalent bonds: they should be termed constitutional
graphs, because they correspond to constitutional formulas.
Chemical graphs of the same type may also be infinite, as

shown by the graphite and diamond lattices. Other possibilities
for elementary carbon were examined, and the relative stability
of the lattice was estimated: polyyne carbon (unidimensional),
condensed 4 + 8 gons or 7 + 5 gons (bidimensional), truncated

octahedral lattice (tridimensional).68

15. Reaction graphs

A gqguite different class of graph applications in chemistry
correlates vertices in a graph with assemblies of atoms
(molecules or reactive intermediates) and edges with elemetary
transitions between two such assemblies (e.g. reactio steps).

Such graphs should be called reaction graphs.

Apparently the first use of reaction graphs was for explo-

69 In the case of ethyl

ring 1,2-shifts in carbenium ions.
cations with five different substituents partitiocned in two
groups, with two and three substituents respectively, Wagner=-
Meerwein-Whitmore isomerizations lead to twenty non-isomorphic,
i.e. isomeric, graphs (if the two ethyl carbons may be distin-
guished from one another, for instance by isotopic labelling),

or to ten graphs if the two carbons are indistinguishable. The

resulting reaction graphs of orders 20 and 10 respectively,
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are remarkable. Both are cubic graphs. The former is the
Desargues-Levi graph, and applies also to intramolecular iso-
merizations of five-coordinated complexes with trigonal-
bipyramidal configuration (with two apical and three equato-

rial ligands) such as phosphc:ranes70_?2 or organometallic

el The 10-vertex qraph75 is the Petersen graph,

complexes.
also called the 5-cage because it is the smallest graph of

girth* five.

Intramolecular isomerizations of trigonal bipyramidal stuc-
tures may have several modes of rearrangement,76 each

involving different mechanisms: the most plausible are the Berry
pseudorotation and the turnstile rotation mechanisms.72 The
overall symmetry of the reaction graph suggests a certain
codification of the twenty vertices of the graphs by using

two symbols from the five substituent symbols,77 which is
closest to the notation proposed by Ugi.78 Similar reasoning
applies to intramolecular isomerizations of octahedral com-
plexes with six different ligands; the reaction graphs are

’ ; : 79
more complex, however, in this case and have 30 vertices.

Various parallel and/or subsequent substitution reactions,
such as successive aromatic substitutions, or solvolysis of

polyhalogenated compounds, yield complex reaction graphs.so

Two exciting uses of reaction graphs are for (i) the planning

of synthetic approaches to complex molecules starting from

* The girth of a graph is its smallest circuit.
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available synthons and using known conversions, as brilliantly

demonstrated by Corey and wipke,81’82

and for (ii) analysis of
complex reactions such as the isomerizations leading to
adamantanea3 or diamantane.84 In the latter analysis, strain
energies for all species are calculated, allowing to determine

the chemical structure of intermediate products and the actual

pathways of the isomerization.

16. Isographic non-variants

A combination of informations provided by constitution graphs
and by reaction graphs can be afforded by a third type of
graphs whose vertices represent atoms in reactant and product,
and whose edges represent bonds which are common to both
reactant and product. Such graphs are called isographic non-
variants,85 and their main use is for the analysis of pericy-
clic reactions such as reactions with cyclic six-membered

transition states.86 An analogous analysis had been performed

earlier by Mathieu87 but it had not explored all possibilities,

and a similar analysis was publisihed more recently by

Hendrickson.BB

17. Mathematical excursions

As mentioned earlier, many problems raised by chemistry have
yet to be solved rigorously by graph theorists. In some cases,
algorithms and computer programs may be used for providing
restricted numerical solutions to problems of chemical interest.
In a few cases, it may be possible to uncover mathematically
interesting facts starting from chemical considerations.

Several new classes of graphs are derived by generalizing the
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Desargues-Levi graph, and these were called "combination

graphs".89

A very interesting class of highly symmetric graphs are the
g-cages mentioned above, i.e. the smallest unitransitive cubic
graphs of girth g. Tutte90 demonstrated that there exist only
five cages with g = 3,4,5,6 and 8. The 4-cage is the non-
planar valence isomer of benzene, corresponding to the Claus
diagonal formula; the 5-cage is the Petersen graph. If the

unitransitivity restriction is removed, (3,g)-cages result.

The (3,7)-cage was described by McGee.91 A first (3,10)-cage

with 70 points was obtained in 1972,92 but two more such (3,10)

-cages were recently found by W. Harries.93 In 1973, three

24 but now

94

different (3,9)-cages with 60 vertices were known,
a total of six have been founc‘l.95 Only one (3,11)-cage
with 112 vertices and one (3,12)—-cage96 with 126 vertices

are known.

Valence isomers of annulenes, corresponding to cubic graphs,
were the incentive to count and construct all cubic graphs
with up to 10 points and all planar cubic graphs with 12
points. In a multi-author paper these graphs allowed the

demonstration of theorems concerning cubic identity graphs.97

18. Outlook

only few chemical applications of graph theory were discussed
in the present and in a previous review.98 Many more are dis-
cussed in an edited book due to appear at the end of 19'.'5.99
It is certain that graph theory has still much to offer to

chemists.
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