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GRAPHS IN QUANTUM CHEMISTRY

Oskar E. Polansky

Institut fir Strahlenchemie im Max-Planck-Institut fiir
Kohlenforschung, 433 Miilheim (Ruhr), BRD

The purpose of this paper is not so much to report
results as to express some thoughts about possibilities for
the application of graphs in guantum chemistry.

Aspects of graph theory are used extensively in HMO
theory [1]. However, in HMO theory graphs may be interpreted
in two different ways:

(1) as the structural graph of the conjugated system consid-
ered [2] or

(2) as a graph in which vertices correspond to the basis
functions used for the construction of the HMO's ("basis

graph").

1. Basis Graphs.

The concept of basis graphs may be extended to quantum
chemical methods other than HMO theory. This, however, implies
that a one-to-one correlation exists between the set of
vertices, U = {..., U, Us’ Ut,...} = Qo Ep Be Tpiomeo: up-}

and the elements of the basis vector, P = (...¢%wswt...)

Eo® 8! T
U= foeer T 8 trossd ™ ek 8 tuns) 2@ (1)
The basis functicons are then mapped as an edgeless graph,

3»0 = [U, K] where k| =0 . 2)
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The basis graph g" consists of precisely as many components as
basis functions. Each component is a complete graph of zero
order.

In the basis © an operator 5’ is represented by the
integrals (rl&Ws). If product functions or their linear
combinations are used in the final description of the system
considered, integrals of the type (rs[@|tu > also occur.

If each integral (rW &|s > between different basis

functions, r#s, which does not vanish essentially creates an

: L o .
edge, K. = {r,s} in &°, % successively alters to é; "
In this operation the integrals
~
v [ T R——— may be attached directly to the vertex U_. and
(ri§’|s7 .+....may be attached directly to the edge Krs'

The values of these integrals are contributions to the weight
of the vertices or edges. Unfortunately no direct attachment
if the integrals of the type <{rsl @Wtu ) is possible. However,
if an expansion of the more center integrals in terms of the

one and two center integrals exists such as

(rS\(}\tLU: Z Ay\)(ula’lv) (3)
U,V
{u,v} {x,s,t,ul

in which p=v or p#v, these difficulties are removed. The
value of {rs| 6ltu ) is divided into contributions to the
weights of the vertices and to the edges involved.

By carrying out this procedure for all the integrals
produced by the operator & and by summing up the different
contributions to the vertex weights, wrr’ and the edge

weights, W a graph g' is obtained which has the same

rs’
vertex set U as the basis graph ??. In general 9 will be



- 185 =

an irregular weighted complete graph J{n. But if between two
particular subsets of U all the integrals produced by @
vanish essentially+ the resulting graph, ;, may consist of
several components each of which is an irregular weighted
complete graph. Any edge in %— in which the sum of the
contributions to its weight accidently equals zero should not

be omitted.

2. Weight Matrices.

The weights of the vertices and edges of & may be

ordered to the weight matrix W of 9

= (W) (4)

=

If all the weights are real numbers™? the weight matrix is
symmetric

T

=

(5)

=

The weight matrix W basically represents the quantum
chemical problem set up by the operator & in the basis 9 .
Therefore, the eigenvalues of W exactly equal the eigenvalue
of él in . The weighted graph ; represents the graph
formulation of the guantum chemical problem considered; the
strucutre of ?r is precisely the structure of the quantum
chemical problem. This is confined by the limits set up by the
necessity for an expansion like (3).

Generally the weight matrix describes a particular

+this might occur due to symmetry reasons.

*this is always the case if the operator ( is hermitian.
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distribution of a distinct quality represented by the operator
é’ over the different vertices and edges of a graph. In this

way the elements of W are related to a particular scaling

of the gquality considered. The weight matrix W corresponds

to a distinct zero point and to a distinct unit of the quality

which W represents. If the unit is changed from [A] to

[B] = k[A] the weight matrix also changes.

13

' [B]

=

(6)

= =

= >
=

If the zero point of the scale is transformed by alAl the

resulting weight matrix W" is given by

W' =W+ a -

I

(7)

where I 1is the unity matrix of the same order as W. Eq. (7)
illustrates that only the diagonal elements of W represent
absolute amounts of the quality considered; the off diagonal
elements represent relative amounts.

It is interesting to note that the adjacency matrix A
represents the quality of neighbourhood which can have only

two values indicated by 1 (neighbourhood) and O (no neighbour-

hood) .

3. Weighted Complete Graphs.

A complete graph }fn with n wvertices is

(1) uniformily weighted if

(1.1) all vertices have the same weight, W__=W__=...=a;

(1.2) all edges have the same weight, W S=w =...b;
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(2) regularily weighted if

(2.1) all vertices have the same weight, Wrr=wss=...=a;

(2.2} not more than (n/2) different edge weights exist
which associate with the edges in such a way that
each edge wreath can be mapped onto each other

edge wreath of Jﬁn; or

(3) irregularily weighted in all other cases.

The weight matrix W of a uniformily weighted complete

graph ifn(a,b) is given by

W =al+ba (8)

I 1is the unity matrix and A the adjacency matrix of H’n.
Comparison of eq. (8) with egs. (6) and (7) shows that A
leads to W with a particular change of scaling. The character-
istic polynomial corresponding to W should be equal to that

of A

XK plo,1) = (x=1)""" (x4n-1) (9)
except for the different scaling. Thus the following is
obtained

n-1

X(¥X la,b) = [x+a-b] [x+a+(n-1)b] (10)

If {¢£} denotes the set of orthonormalized basis
functions corresponding to the vertex set ({r} of the

uniformly weighted graph X n(a,b) the function correlated

to the non degenerated eigenvalue X, = —a-(n-1)b is given by
n
- o 1/2
4 (¥, lab) = n i % (11)
r=1

The functions correlated to the (n-1) degenerated eigen-

values x. = —a+b, j = 1,2...,(n-1) are given by



- 1&g =

A2 asin, - ol 1wisma (2
3%y Ewr, <j< (n

J+1

vj(}(n a,b) = [2(n-j) I

If the basis functions are not orthogonal to each other
functions (11) and (12) are altered only in the normalisation
factors.

Condition (2.2) for regularily weighted graphs suggests

several properties. Mapping of the edge wreaths onto each
other indicates the congruency of all edge wreaths. Since an
edge wreath of an contains n-1 edges which cannot be
weighted by more than n/2 different edge weights, from the
congruency it follows that: (a) at least pairs of the edges
of an edge wreath have equal weights; and (b) if n 1is even
not more than one edge of the edge wreath is singly weighted.
By collecting precisely those edges which have the same weight

b edge subgraphs of X n are obtained which are uniformly

NG

weighted cyclic graphs o(py). An additional subgraph,

consisting of n/2 components, each of which is the complete

graph }fz(a,b appears only if n 1is even.

n/z)
It is obvious that the weight matrix of a regularily
weighted graph has the circulant form. Therefore, the

characteristic polynominals are:

2m m )
XCH 50 |a,bu) = ﬂ I:x + 2 z b, cos%r:'fﬁ'ﬁ“]
=0 V=1
(13)
2m+1 m
X (Hppep acb ) = ]"[D ]:x * B by cos2lXT + (-1)jbm+£|
J= v =1

The relationships between a reqularily weighted complete

graph ¥} n(a,b\)) and the first n/2 powers of the uniformly
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weighted cyclic graphs [31, € (:)(a,bv) should be noted.

4. Characteristic Polynomials of Joints of

Uniformly Weighted Complete Graphs.

In general, quantum chemical applications of graph theory
will lead to irregularily weighted complete graphs. However,
these graphs may often contain uniformly weighted subgraphs.
If the irregularily weighted complete graph X # is inter-
preted as a joint [4] of M uniformly weighted graphs J{nw'
general expressions for the characteristic polynomials can be
obtained.

If lfn represents the joint

= o o R o...0 KX (14)
Hiw me1 ) 3fm2 Rz 0 m, g,

then

M
n = z m (15)

Furthermore if lfn and the X ~ are defined by
v

}ﬁn = [Un' Kn] and Wmv = [U\), K\)] (16)
U, represents the union of all UU's
M
U=y U (17)
no v

However, the union of all edge sets Kv is only a subset of

Kn. If Kv denotes the difference
M

K =K - U K, (18)
v=1

then Kv represents the union of all those edges

{UrUs}UreUu, U_eU,, u#v} which are incident to vertices
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not belonging to the same subgraph ?(m s XE Kuv denotes
v

the union of all edges connecting Jk and ¥
My, my,

kK = U {U U |Ue Uu,Use Ui vEu} (19)
r,s

the subset Kv of eq. (16) is obtained by

K = U K (20)
¥ 1:u<\)éM L

If all X% m's are uniformly weighted graphs as indicated
v

above

g, = Halagb) (21)

v Y

and if the weights of all edges {LTIUS'}EK]_I\J are the same,

W =¢C the characteristic polynomial

uv pv’
A m,=1
X(Ha, by c ) =fux - || x+ayb) (22)
v=1
is obtained from the determinant |[|x.I+W|| by elementary

calculation. In eq. (20):fM(x) denotes the function which
might be derived by expanding the generally non symmetric

determinant I|Dvu“

Futsl = [[Dll
uv = X +a; + (m~1)b,

(23)
Dpyv = mycyy

Dyy = MyCyy
It should be noted that the degenerated eigenvalues of the

I{m‘s remain unperturbed whereas the non degenerated eigen-
v
values of theikm 's combine together. This behaviour is due
v
to the automorphism group of lfn. If Polya's conditions of
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congruency [5] are interpreted such that an edge of the
particular weight w may only be mapped onto an edge of the
same weight w, and if all the weights a bv, cw are

mutually different, the automorphism group of J{n is given [61]

by

POHp) =Ty ) Ky )+ ooe + K ) (24)

Since the automorphism group of a uniformly weighted graph

K m is the symmetric group ‘)’m it follows that

(¥ =J’m1+fm2+... L S T (25)
In general it should be possible to show that only the non
degenerated eigenvalues of the X - 's belong to the totally
symmetric irreducible representation of .‘f’m and T(Rn) but
each set of the degenerated eigenvalues belgngs to another
irreducible representation of fm and T ( fh’n) . While only
the functions of type (11) combine together in fM(x) , all the
functions of type (12) remain unchanged.

The following example of an all valence electron calcula-
tion of methane CH4 may illustrate a practical application
of the previous discussion. There are 8 basis functions
{cpr r=1,2,...,8}. The first four, {cp1’ P, P, Py }, denote
the 1s-A0 of the H-atoms, {H1, H,, Hy, Hy }; the last four,
{cps, Per Dqr ch} denote the 5p3 hybrid orbitals of the
C-atom which point to the H-atoms (Fig. 1). The basis graph

L‘io consists of B vertices: 4 are one particular type (o);

and 4 are another type (e), see Fig. 2. 1In the corresponding



- 192 -

Fig. 1 Basis functions for CH

4
{Gp‘ ;0,0 0, (pd} .... ls-atomic orbitals at H
{(,Os, Pgr Pps (ps} S 2$p3-hybrid orbitals at C

e o o o
8

(&)
o
~

Fig. 2 Basis graph &°
o ... Is-atomic orbitals at H
e ... 2sp’~hybrid orbitals at C

the vertex | corresponds to @,
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weighted graph ‘;’ (Fig. 3) two uniformly weighted complete

graphs 3(’4(h,d) and }f4(c,e) are subgraphs of t‘} .

Fig. 3 Weighted graph §

vertex weights: o...h; e...c

edge weights: —a -----d
—h ———e
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By using the weights indicated in Fig. 3, the characteristic

polynomial of §, is expressed as

vydddabbb
X(x) = detl||W + x.I|]| =|dyddbabb
= . ddydbbab
dddybbba
abbbzeee (26)
babbezee
bbabeeze
bbbaeeez

in which y=x+h and z=x+c. X(x) is obtained as

X(X) = [ (x+c=e) (x+h-a) = (a=b) 21> [ (x+c+3e) (x+h+3d) - (a+3b) 2]  (27)

This leads to an eigenvalue spectrum consisting of 2 non
degenerated levels and 2 groups of threefold degenerated

levels. This structure is due to automorphism group

rg) = 5, 1€ (28)

5. Other Applications.

The characteristic polynomial of uniformily weighted
and regularily weighted graphs may be used to derive the upper
and lower bounds for the eigenvalues of an irregularily
weighted graph.

It has been shown [ 7] that the automorphism group of a
graph might be of higher order than the corresponding point
group. In this case, since the automorphism group consequently
contains more irreducible representations than the point group
a further splitting of secular determinants is sometimes

allowed.
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